Electronic switching circuits that govern, or “decide,” whether inputs will pass to output or be stopped are called logic gates. The logic gates discussed here are the building blocks for other logic gates. The basic logic gates are: AND gates. OR gates. NOT gates. NAND gates. NOR gates. XOR gates. …

Read More »## Binary Number System | Basics | Definition

Definition: Digital electronic circuits can be made to act in only two states: on and off. This two-state system is called a binary number system. This system can be compared to a single-pole, single-throw (SPST) switch, Figure 1. A switch in the off position represents a 0 in the binary …

Read More »## Latches and Flip Flops

The goal of this module is to explore Sequential Logic and its functional building blocks and to describe the operations of latches and flip-flops in digital circuits. Objective A learner will be able to: Explain the difference between combinatorial logic and sequential logic. Define positive and negative edge triggering. Explain …

Read More »## Logic Simplification Karnaugh map

The goal of this module is to provide learners with tools for reducing Boolean algebra expressions to their simplest form. Objectives The learner will be able to: Reduce Boolean expressions using the 14 Boolean rules. Simplify complex Boolean algebra expressions using the 14 Boolean rules and apply DeMorgan’s Theorem. Carry …

Read More »## Combinational Logic Circuits | De Morgan’s theorem

The goal of this module is to provide learners with tools for understanding the operations of XNOR and XOR gates and enable learners to apply Boolean rules to find the Sum of Products (SOP) and the Product of Sums (POS). Objectives The learner will be able to: Explain the operation …

Read More »## Basic Logic Gates and Boolean expressions

The goal of this module is to enable learners to apply basic logic gates and Boolean expressions to digital circuits. Objectives A learner will be able to: Explain the difference between analog and digital quantities Give examples of binary numbers and describe their structure Give examples of hexadecimal and octal …

Read More »## Number Systems in Digital Electronics

The goal of this module is to provide learners with skills and practice necessary to enable them to convert between number systems used in digital electronics. Objective The learner will be able to Explain the difference between analog and digital quantities Give examples of binary numbers describe their structure Give …

Read More »