Home / Circuits with Matlab / Single Phase Voltage Calculation | Matlab

Single Phase Voltage Calculation | Matlab

Want create site? Find Free WordPress Themes and plugins.

Here, we will find phase voltages VAN, VBN, and VCN, shown in the following figure, using Matlab.

By applying KVL, we come up with the following three equations:

$\begin{matrix}   110\angle {{0}^{o}}=(1+j1){{I}_{1}}+(5+j12){{I}_{1}} & \cdots  & (1)  \\   110\angle -{{120}^{o}}=(1-j2){{I}_{2}}+(3+j4){{I}_{2}} & \cdots  & (2)  \\   110\angle {{120}^{o}}=(1-j0.5){{I}_{3}}+(5-j12){{I}_{3}} & \cdots  & (3)  \\\end{matrix}$

After simplifying above equations, we have

$\begin{matrix}   110\angle {{0}^{o}}=(6+j13){{I}_{1}} & \cdots  & (4)  \\   110\angle -{{120}^{o}}=(4+j2){{I}_{2}} & \cdots  & (5)  \\   110\angle {{120}^{o}}=(6-j12.5){{I}_{3}} & \cdots  & (6)  \\\end{matrix}$

Let’s put the above three equations in matrix form,

$\left[ \begin{matrix}   6+j13 & 0 & 0  \\   0 & 4+j2 & 0  \\   0 & 0 & 6-j12.5  \\\end{matrix} \right]\left[ \begin{matrix}   {{I}_{1}}  \\   {{I}_{2}}  \\   {{I}_{3}}  \\\end{matrix} \right]=\left[ \begin{matrix}   110\angle {{0}^{o}}  \\   110\angle -{{120}^{o}}  \\   110\angle {{120}^{o}}  \\\end{matrix} \right]$

Now, we can write the above matrix as:

\[\left[ Z \right]\left[ I \right]=\left[ V \right]\]

From above, we can easily calculate unknown currents using:

$I=inv(Z)*V$

And for the phase voltages:

\[\begin{matrix}   \begin{align}  & {{V}_{AN}}=(5+j12){{I}_{1}} \\ & {{V}_{BN}}=(3+j4){{I}_{2}} \\ & {{V}_{CN}}=(5-j12){{I}_{3}} \\\end{align} & \cdots  & (7)  \\\end{matrix}\]

Now, it’s time to write Matlab code to find out the phase voltages using the above formulas.

Measure phase voltages in three-phase system using Matlab


clear all;close all;clc
% Phase Voltages Calculation using Matlab
Z = [6-13*j 0 0;
0 4+2*j 0; % Z-Matrix (Impedance Matrix) from text
0 0 6-12.5*j];
c1=110; %Angle is 0 degree here so we simply ommit it
c2 = 110*exp(j*pi*(-120/180)); % Voltages expressed in phasor form (V=Vm*exp(j*theta))
c3 = 110*exp(j*pi*(120/180)); % Angles are converted into radians (=degrees*pi/180)
V = [c1; c2; c3]; % Voltage Vector [V] mentioned in the text
I = inv(Z)*V; % Calculate unknown Loop currents
%% Phase Voltages Calcualtion
V_an = (5+12*j)*I(1);
V_bn = (3+4*j)*I(2); % Calcualting Phase Voltages using equation (7) in text
V_cn = (5-12*j)*I(3);
% Magnitude and Angle Calculation for each Phase Voltage
V_an_abs = abs(V_an);
V_an_ang = angle(V_an)*180/pi;
V_bn_abs = abs(V_bn);
V_bn_ang = angle(V_bn)*180/pi;
V_cn_abs = abs(V_cn);
V_cn_ang = angle(V_cn)*180/pi;
%% Print out Results
fprintf('Phase Voltage Van \n Magnitude: %f \n Angle in degree: %f \n', V_an_abs, V_an_ang)
fprintf('Phase Voltage Vbn \n Magnitude: %f \n Angle in degree: %f \n', V_bn_abs, V_bn_ang)
fprintf('Phase Voltage Vcn \n Magnitude: %f \n Angle in degree: %f \n', V_cn_abs, V_cn_ang)

Results

Phase Voltage Van

 Magnitude: 99.875532

 Angle in degree: 132.604994

Phase Voltage Vbn

 Magnitude: 122.983739

 Angle in degree: -93.434949

Phase Voltage Vcn

 Magnitude: 103.134238

 Angle in degree: 116.978859

Did you find apk for android? You can find new Free Android Games and apps.

About Ahmad Faizan

Mr. Ahmed Faizan Sheikh, M.Sc. (USA), Research Fellow (USA), a member of IEEE & CIGRE, is a Fulbright Alumnus and earned his Master’s Degree in Electrical and Power Engineering from Kansas State University, USA.

Leave a Reply