## Basic System Properties

Definition of a System A common way of viewing a system is in terms of a “black box” with terminals, as illustrated in the following figure: In the figure, x1(t), x2(t)… xp(t) are the signals applied to the p input terminals of the system and y1 (t), y2 (t)… yq …

## Linear Difference Equations

Consider the single–input single –output discrete time system given by the input/output difference equation. $y\left( kT+nT \right)+\underset{i=0}{\overset{n-1}{\mathop \sum }}\,{{a}_{i}}y\left( kT+iT \right)=\underset{i=0}{\overset{m}{\mathop \sum }}\,{{b}_{i}}x\left( kT+iT \right)~~~~~~~~~~~~\left( 1 \right)$ In (1), T is a fixed real number, k is a variable that takes its values from the set of integers, and the …

## Source Transformation Example Problems with Solutions

A highly valuable byproduct of Thevenin’s and Norton’s theorem is the technique of source transformation. Source transformation is based on the observation that if a Thevenin’s network and Norton’s network are both equivalent to a particular source network, then they must also equivalent to each other. This observation allows you …

## Maximum Power Transfer Theorem

Maximum Power Transfer Theorem Definition Maximum power transfer theorem states that maximum power output is obtained when the load resistance RL is equal to Thevenin resistance Rth as seen from load Terminals. Fig.1: Maximum Power Transfer Theorem Any circuit or network may be represented by a Thevenin equivalent circuit.  The Thevenin …

## Nodal Analysis or Node voltage Method

Nodal analysis or Node voltage method uses node voltages as circuit variables in order to analyze the circuit. The objective of this section is to obtain a set of simultaneous linear equations. However, unlike the mesh analysis method, the procedure developed in this section depends on the choice of certain …